Test Summary
A heat run test was performed in accordance to ANSI/IEEE C57.12.91, Section 11, on a 4500 KVA Longwall Power Center with all covers, top and side, in place and fastened. The top covers over the transformers were of the Vent-A-Lid design. Ambient temperature was 23.2°C. The highest surface temperature recorded (during a short-circuit test) was on a Vent-A-Lid cover over a transformer. This cover was within 2” of the core steel of the transformer. This temperature was 66°C, a rise of 42.8°C.

Note 1: ANSI/IEEE C57.12.01, Section 5.11.3.5 Temperatures of external parts accessible to operations shall not exceed the following temperature rises over ambient temperature at maximum rated load: Readily Accessible: 65°C Rise; Not Readily Accessible: 80°C Rise.

Note 2: “Not Readily Accessible” is considered to apply to equipment parts located at heights greater than 6.5 feet (1.96 m) above floor level, or otherwise located to make accidental contact unlikely.

Heat Run Test

Test Summary
A heat run test was performed in accordance to ANSI/IEEE C57.12.91, Section 11, on a 4500 KVA Longwall Power Center with all covers, top and side, in place and fastened. The top covers over the transformers were of the Vent-A-Lid design. Ambient temperature was 23.2°C. The highest surface temperature recorded (during a short-circuit test) was on a Vent-A-Lid cover over a transformer. This cover was within 2” of the core steel of the transformer. This temperature was 66°C, a rise of 42.8°C.

Note 1: ANSI/IEEE C57.12.01, Section 5.11.3.5 Temperatures of external parts accessible to operations shall not exceed the following temperature rises over ambient temperature at maximum rated load: Readily Accessible: 65°C Rise; Not Readily Accessible: 80°C Rise.

Note 2: “Not Readily Accessible” is considered to apply to equipment parts located at heights greater than 6.5 feet (1.96 m) above floor level, or otherwise located to make accidental contact unlikely.
Another new and innovative product from Line Power Manufacturing — the leader in mine power distribution.